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Outline

e A new condition on the existence of nonlinear invariants
e How to check that the attack does not apply for a given cipher

e Impact of the round constants and of the linear layer



The invariant subspace attack [Leander et al. 11]

Linear subspace invariant under E;.
n
Fy o | -
V. a linear subspace of F,

Ej, Ex(V)=V




The nonlinear invariant attack [Todo-Leander-Sasaki 16]

Non-trivial partition of Fy invariant under Ej:

F% Fy
S: any subset of ]Fg

E; EiL(S) =S

@ @ or Ex(S) =TF2\ S




The nonlinear invariant attack [Todo-Leander-Sasaki 16]

Non-trivial partition of Fy invariant under Ej:

F% Fy
S: any subset of ]Fg’
E; E.(S) =8
@ @ or Ex(S) =F3\ S
Equivalently:

Let g be the Boolean function defined by g(x) :=1 iffx € S

Vo € Fy,g(Er(z)) = g(x) or Vo € Fy, g(Ei(x)) = g(x) + 1

Such a g is called an invariant for Eg.



Using the same invariant for all layers in a key-alternating cipher

Find an invariant g for the Sbox-layer and for all Addy, o L.




Finding an invariant g for all Addy, o L

g(L(x) + k;) = g(x) + ¢ g(L(x) + kj) = g(x) + €
= g(L(x) + k;) = g(L(xz) + kj) + (&; + €5)

< g(y +k; +kj) =g(y) + (g; + &)

(k; + k;) is a linear structure of g.

Linear space of a Boolean function g:

LS(g) := {a € Fy : x — g(x + o) 4+ g(x) is constant}



Using the same invariant for all layers in a key-alternating cipher

Find an invariant g for the Sbox-layer and for all Addy, o L.

g is an invariant for the Sbox layer and satisfies:
e LS(g) contains (k; + k;)

e LS(g) is invariant under L



Very simple key schedules

All round-keys are defined by k; = k + ¢;




T he main condition for very simple key schedules

D = {(Cz ‘I-Cj) such that k; = kK + ¢; and kj = k‘|‘Cj}

Wi (D) := smallest subspace invariant under L which contains D .

Is there a non-trivial invariant g for the Sbox-layer such that

Wi(D) C LS(g) 7



Checking that such invariants do not exist
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A simple case

Question:
Is there an invariant g for the Sbox-layer such that W (D) C LS(g)~

If dim W (D) > n — 1, then degg < 1, which is impossible
unless the Sbox layer has a component of degree 1.

If dim Wi (D) > n — 1, the attack does not apply.
This holds for any choice of the Sbox-layer.
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Some lightweight ciphers

SKinny-64-64.
D = {RCq; + RCy7, RC2 + RCyg, RC3 + RCy9, RC4 + RC3p, RC5 + RC21}
dim W, (D) = 64
The round-constants and L guarantee that the attack does not apply.
Prince.
D = {RC; + RC2, RC; + RC3, RC; + RC4, RC; + RC5, a}.
dim Wy, (D) = 56
Mantis-7.
D = {RC; + RC2,RC; + RC3,RC;{ + RC4,RC; + RC5,RC; + RC4,RC; + RC7, a}.
dim Wp, (D) = 42
Midori-64.
Wi (D) = {0000,0001}'¢, dim Wy (D) = 16
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When dim Wi (D) < n

a € LS(g) iff g(x + o) + g(x) = e for all «.

O-linear structures.
a € LSY(g) iff g(x + ) + g(x) = 0 for all x.

If a subspace Z of LS’(g) is known
e g is constant on each a + Z since g(a + z) = g(a) for any z € Z

e g(S(x)) = g(x) + ¢ for all x, then g is constant on S(Z).
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If Z C LSY(g) is known

L={}
repeat

ziZ

Compute S(z)
Add to L a representative of the coset of S(z)
until |L| = 2n—dimZ

But Wr,(D) C LS(g), while we need Z C LS%(g)...
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Finding a subspace of LSY(g)

Prince.
For any o € LS(g), (= + L(x)) € LS%(g).

D" := {z + L(z), = € D}.
we have dim Wp,(D’) = 51.

=\We can check that the Sbox-layer of Prince has no non-trivial
invariant g with Wr(D’) C LS%(g).

Mantis-7.
D = {RC; + RC2,RC; + RC3,RC; + RC4,RC; + RC5,RC; + RC4,RCy + RC7, a}.
= W(D) C Ls"(g)

We can check that the Sbox-layer of Mantis has no non-trivial
invariant g with Wr.(D) C LS%(qg).
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Very different behaviours

SKinny-64-64.
D = {RCy + RCy7, RC2 + RCyg, RC3 + RCq9, RC4 + RCyp, RC5 + RC21}

dim W (D) = 64

Prince.

D = {RC; + RCs, RC; + RC3, RC; + RC4, RCy + RCs, a}.

dim Wy (D) = 56

Mantis-7.

D = {RC; + RCs, RCy + RC3, RC; + RC4, RC; + RCs, RCy + RCg, RC1 + RC7, a}.

dim Wp, (D) = 42
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Can we find better round-constants?
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Maximizing the dimension of Wy (c)

Wi(c) = (Li(c),t €N) .

dim Wy (c) = smallest d such that there exist Ag,...,Aq € Fa:

d
> AL'(c)=0.
t=0

dim Wiy (c) is the degree of the relative minimal polynomial of ¢

Theorem. There exists ¢ such that dim Wy (c) = d if and only if d is
the degree of a divisor of the minimal polynomial of L.

= max dim Wp,(c) = deg Miny,
ceFy
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For some lightweight ciphers

LED.
Minp(X) = (X3 4+ X"+ X+ X3+ 1)4( X8+ X"+ X0+ X3+ X%2 4+ X +1)4
There exist some ¢ such that dim Wy, (¢) = 64
Skinny-64.
Minz (X) = X104+ 1= (X 4+ 1)
There exist some ¢ such that dim Wy, (¢c) = d for any 1 < d < 16.

Prince.

Ming(X) = X*0+x® 4+ x4+ x4+ xP2 4 x84+ X+ x*+ X% +1
(XP+ X3+ X2+ X +1D)3(X?+ X + DH(X +1)*

max.dim W (c) = 20
Mantis and Midori.
Minz(X) = (X +1)% = max dim W (c) = 6
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Rational canonical form

When deg(Miny) = n, there is a basis for which the matrix of L is the
companion matrix

[0 1 0 ... 0 )
O 0 1 ... 0
C(MiI‘IL): :
0o 0 0 ... 1
\ Po P1 P2 .-+ Pn-1)

More generally, there is a basis for which the matrix of L is

[ C(Qr) )
C(Q2)
\ C(Qr)
for » polynomials Q | Qr—_1 | --- | Q1 = Ming,

Q1, Q2, ... , Qp are called the invariant factors of L.



Example

For Prince.

Ming(X) = X204+ x¥ 4 x4 x4 x2 4+ x8+ x0+ x4+ x%+1
= (X' + X+ X+ X +1D)*(XP+ X+ DY(X +1)?

8 invariant factors:

Q1(X) Q2(X)
X20+X18—|—X16—|—X14—|—X12—|—X8—|—X6—|—X4—|—X2—|—1
Q3(X) = QuX)=X3+ X0+ X2+1=(X+1DHX2+ X +1)2

Qs5(X) = Qe(X) = Q7(X) = Qs(X) = (X +1)?
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Maximizing the dimension of Wy (cy,...,ct)

Theorem. Let Q1,Q2,...,Q, be the r invariant factors of L.
For any t < r,
t
c{?..&fgt dim Wi (c1y...,¢c) = Z deg Q;.
1=1
We need r elements to get W (D) = F7.

For Prince.

For t =5, maxdim Wr(c1y...,¢5) =20+4+20+8 4+ 8 +2 =58
We need 8 elements to get the full space.

Mantis and Midori. r = 16 invariant factors

Q1(X) =...,Q8(X) = (X +1)° and Q9(X) =...,Q16(X) = (X +1)*
For t =7, maxdim Wp,(cq,...,c7) = 42,
For t = 8, maxdim Wpr(cy,...,cg) = 48.

We need 16 elements to get the full space.
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max dim W, (D)

Maximum dimension for #D constants

—e— Prince
—e— Mantis

2

14 16
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For random constants

Fort > r,

Pr [”L(Cla”'vct):Fg]
3 on
Cl’co.,ct&FZ

can be computed from the degrees of the irreducible factors of Miny,
and from the invariant factors of L.

LED.

Ming(X)= (X8 + X T+ X+ X3+ D*( X8+ X"+ X0+ X°+ X2+ X +1)?

Pr [Wr(c) = F$Y = (1 — 27%)% ~ 0.9922
c<—IE<‘g4
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P (dim W, (D) = 64)
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Conclusions

Easy to prevent the attack:
e by choosing a linear layer which has a few invariant factors

e by choosing appropriate round constants

Open question: Can we use different invariants for the Sbox-layer and
the linear layer?
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